Forskning

June 12, 2023

NOD-like receptors in the pathogenesis of metabolic (dysfunction)-associated fatty liver disease: Therapeutic agents targeting NOD-like receptors

S Khanmohammadi et al, 2023. NOD-like receptors in the pathogenesis of metabolic (dysfunction)-associated fatty liver disease: Therapeutic agents targeting NOD-like receptors, Diabetes and Metabolic Syndrome, published online.

ABSTRACT:

Background and aims: In metabolic (dysfunction)-associated fatty liver disease (MAFLD), activation of inflammatory processes marks the transition of simple steatosis to steatohepatitis, which can further evolve to advanced fibrosis or hepatocellular carcinoma. Under the stress of chronic overnutrition, the innate immune system orchestrates hepatic inflammation through pattern recognition receptors (PRRs). Cytosolic PRRs that include NOD-like receptors (NLRs) are crucial for inducing inflammatory processes in the liver.

Methods: A literature search was performed with Medline (PubMed), Google Scholar and Scopus electronic databases till January 2023, using relevant keywords to extract studies describing the role of NLRs in the pathogenesis of MAFLD.

Results: Several NLRs operate through the formation of inflammasomes, which are multimolecular complexes that generate pro-inflammatory cytokines and induce pyroptotic cell death. A multitude of pharmacological agents target NLRs and improve several aspects of MAFLD. In this review, we discuss the current concepts related to the role of NLRs in the pathogenesis of MAFLD and its complications. We also discuss the latest research on MAFLD therapeutics functioning through NLRs.

Conclusions: NLRs play a significant role in the pathogenesis of MAFLD and its consequences, especially through generation of inflammasomes, such as NLRP3 inflammasomes. Lifestyle changes (exercise, coffee consumption) and therapeutic agents (GLP-1 receptor agonists, sodium-glucose cotransporter-2 inhibitors, obeticholic acid) improve MAFLD and its complications partly through blockade of NLRP3 inflammasome activation. New studies are required to explore these inflammatory pathways fully for the treatment of MAFLD.

Modtag nyhedsbrev

Ja tak, jeg vil gerne modtage nyhedsbrev, når der er noget nyt om kaffe og helbred.