May 25, 2015

Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells

J-H Chen and C C Chou, 2015, Acrylamide inhibits cellular differentiation of human neuroblastoma and glioblastoma cells, Food & Chemical Toxicology, published online ahead of print.


This study explores human neuroblastoma (SH-SY5Y) and human glioblastoma (U-1240 MG) cellular differentiation changes under exposure to acrylamide (ACR). Differentiation of SH-SY5Y and U-1240 MG cells were induced by retinoic acid (RA) and butyric acid (BA), respectively. Morphological observations and MTT assay showed that the induced cellular differentiation and cell proliferation were inhibited by ACR in a time- and dose-dependent manner. ACR co-treatment with RA attenuated SH-SY5Y expressions of neurofilament protein-L (NF-L), microtubule-associated protein 1b (MAP1b; 1.2 to 0.7, p < 0.001), MAP2c (2.2 to 0.8, p < 0.05), and Janus kinase1 (JAK1; 1.9 to 0.6, p < 0.001), while ACR co-treatment with BA attenuated U-1240 MG expressions of glial fibrillary acidic protein (GFAP), MAP1b (1.2 to 0.6, p < 0.001), MAP2c (1.5 to 0.7, p < 0.01), and JAK1 (2.1 to 0.5, p < 0.001), respectively. ACR also decreased the phosphorylation of extracellular-signal-regulated kinases (ERK) and c-Jun N-terminal kinases (JNK) in U-1240 MG cells, while caffeine reversed this suppression of ERK and JNK phosphorylation caused by ACR treatment. These results showed that RA-induced neurogenesis of SH-SY5Y and BA-induced astrogliogenesis of U-1240 MG cells were attenuated by ACR and were associated with down-regulation of MAPs expression and JAK-STAT signaling.

Modtag nyhedsbrev

Ja tak, jeg vil gerne modtage nyhedsbrev, når der er noget nyt om kaffe og helbred.