September 29, 2021

Can 3 mg·kg−1 of Caffeine Be Used as An Effective Nutritional Supplement to Enhance the Effects of Resistance Training in Rugby Union Players?

R A Tamilio et al, 2021. Can 3 mg·kg−1 of Caffeine Be Used as An Effective Nutritional Supplement to Enhance the Effects of Resistance Training in Rugby Union Players? Nutrients, Volume 13 (10).


The present study uniquely examined the effect of 3 mg·kg−1 chronic caffeine consumption on training adaptations induced by 7-weeks resistance training and assessed the potential for habituation to caffeine’s ergogenicity. Thirty non-specifically resistance-trained university standard male rugby union players (age (years): 20 ± 2; height (cm): 181 ± 7; body mass (kg): 92 ± 17) completed the study), who were moderate habitual caffeine consumers (118 ± 110 mg), completed the study. Using a within-subject double-blind, placebo-controlled experimental design, the acute effects of caffeine intake on upper and lower limb maximal voluntary concentric and eccentric torque were measured using isokinetic dynamometry (IKD) prior to and immediately following a resistance training intervention. Participants were split into strength-matched groups and completed a resistance-training program for seven weeks, consuming either caffeine or a placebo before each session. Irrespective of group, acute caffeine consumption improved peak eccentric torque of the elbow extensors (p < 0.013), peak concentric torque of the elbow flexors (p < 0.005), total eccentric work of the elbow flexors (p < 0.003), total concentric work of the knee extensors (p < 0.001), and total concentric and eccentric work of the knee flexors (p < 0.046) following repeated maximal voluntary contractions. Many of these acute caffeine effects were still prevalent following chronic exposure to caffeine throughout the intervention. The training intervention resulted in significant improvements in upper and lower body one-repetition maximum strength (p < 0.001). For the most part, the effect of the training intervention was equivalent in both the caffeine and placebo groups, despite a small but significant increase (p < 0.037) in the total work performed in the participants that consumed caffeine across the course of the intervention. These results infer that caffeine may be beneficial to evoke acute improvements in muscular strength, with acute effects prevalent following chronic exposure to the experimental dose. However, individuals that consumed caffeine during the intervention did not elicit superior post-intervention training- induced adaptations in muscular strength. 

Modtag nyhedsbrev

Ja tak, jeg vil gerne modtage nyhedsbrev, når der er noget nyt om kaffe og helbred.