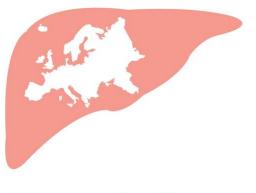
Liver Function

Overview

Research suggests an inverse association between moderate coffee consumption and the risk of developing a range of liver diseases including cancer, fibrosis and cirrhosis. Moderate coffee consumption is typically defined as 3-5 cups per day, based on the European Food Safety Authority's review of caffeine safety¹.

The International Agency for Research on Cancer (IARC) found no clear association between coffee intake and cancer at any body site and suggested that coffee drinking may actually help reduce the risk of certain cancers, including liver cancer². Meta-analyses have suggested that coffee consumption versus no coffee consumption is associated with up to a 40% risk reduction of liver cancer (although this is a dose-dependent relationship)³⁻⁶.


Research suggests that coffee intake is associated with a reduced risk of cirrhosis^{7,8}, fibrosis⁹⁻¹¹, chronic liver disease^{7-10, 12}, and of developing non-alcoholic fatty liver disease^{7,13-20}. Research in patients with advanced hepatitis C-related liver disease also suggests that regular, moderate coffee consumption is associated with lower rates of disease progression²⁰⁻²³.

Several possible mechanisms are under investigation to help understand whether, and to what extent, caffeine is associated with the inverse association between coffee consumption and these liver diseases: for example, the main primary caffeine metabolite, paraxanthine, appears to suppress the synthesis of CTGF (connective tissue growth factor) via a cascade of control cycles, which subsequently slows down the progression of liver fibrosis, cirrhosis and liver cancer^{10,24-26}. Other suggested mechanisms include the anti-carcinogenic effects of cafestol and kahweol²⁷, and possible antiviral effects of chlorogenic acids and caffeic acid¹⁵.

Background information

The European Association for the Study of the Liver estimates that approximately 29 million people in the European Union suffer from a chronic liver condition²⁸. Chronic liver disease is the fifth most common cause of death in Europe²⁹.

GRAPHIC

Chronic liver disease ^{is the} 5th most common cause of death.

Data suggests that about 0.1% of the European population is affected by cirrhosis, corresponding to an estimated 170,000 deaths per year. There are large intra-European variations, for example about 0.1% of Hungarian males die of cirrhosis every year, compared with 0.001% of Greek females³⁰.

Hepatitis, the most common liver disease, is estimated to affect over 10 million people in Europe²⁸.

Liver cancer is the fifth most common cause of cancer-related deaths globally, and the 14^{th} most prevalent in Europe³⁰. It accounts for 5.4%, or 695,000 deaths worldwide (47,000 deaths in Europe)^{28,31}. Liver cancer is the leading cause of death amongst patients with liver cirrhosis³².

Epidemiological projections have suggested that the number of people at risk of chronic liver disease is increasing³³.

Coffee consumption and liver function

Coffee and risk of liver cancer

In 2016, the International Agency for Research on Cancer (IARC) published an updated review of the scientific evidence related to coffee and cancer, finding no conclusive evidence for a carcinogenic effect of coffee overall, and, concluding that the research suggests an inverse association between coffee consumption and liver cancer⁹.

Four meta-analyses of both prospective cohort and case control studies, looking at liver cancer, concluded that all ten of the reviewed epidemiological studies showed an inverse association between coffee consumption and liver cancer³⁻⁶. The results of the cohort studies included in the meta-analyses indicated a dose-response relationship between frequency of coffee consumption and a reduced risk for liver cancer.

Data from the US Multi Ethnic Cohort study also suggests that coffee consumption is inversely related to the incidence of hepatocellular cancer, showing a risk reduction of 38% in those who drank 2-3 cups of coffee per day and 41% in those who drank more than 4 cups³⁴. Two large studies^{35,36} have also shown a similar association, with a risk reduction of up to 72% in the highest coffee drinkers in the EPIC study³⁵, and of 54% in women who drank more than 3 cups of coffee a day in the US Consortium³⁶. Interestingly, the US study showed a greater effect in women compared to men. Data from Finland has considered the role played by the type of coffee, concluding that coffee intake was inversely associated with incident liver cancer and mortality from chronic liver disease, irrespective of whether the coffee was boiled or filtered³⁷.

The inverse association between coffee consumption and liver cancer is observed both in participants with and without a history of liver disease. For example, case control studies in patients with hepatitis have suggested that coffee consumption is associated with a reduced risk of hepatocellular carcinoma^{38,39}, with one of the studies highlighting the potential role for a lifetime coffee consumption of approximately 3 cups of coffee per day.

Overall, drinking coffee has been associated with up to a 40% reduced risk of liver cancer compared to those who do not drink coffee³⁴⁻³⁹.

Coffee and risk of other liver diseases

GRAPHIC

Coffee drinking has also been related to a reduced risk of other liver diseases. A systematic review published in 2014 suggested coffee consumption was associated with beneficial outcomes in patients with chronic liver disease, cirrhosis, hepatocellular cancer and non-alcoholic fatty liver disease⁷. A 2016 review also concluded that coffee intake of more than 2 cups per day in patients with pre-existing liver disease was associated with a lower incidence of fibrosis and cirrhosis, lower hepatocellular carcinoma rates, and decreased mortality⁹.

Liver fibrosis

- A review concluded that patients with higher coffee consumption display a milder course of fibrosis, especially in alcoholic liver disease¹⁰.
- Data from the US National Health and Nutrition Examination Surveys (NHANES 1999-2010) suggests that higher intakes of coffee (including decaffeinated coffee) were associated with beneficially lower levels of liver enzymes⁴⁰.
- Data from the Rotterdam Study Research in patients with non-alcoholic fatty liver also suggested that daily coffee consumption of three or more cups decreases liver stiffness (a marker of liver fibrosis)⁴¹.

Chronic liver disease

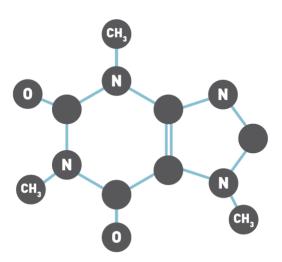
• A Scottish study suggested that coffee drinking is associated with a reduced prevalence of cirrhosis in patients with chronic liver disease¹².

• Data from the US Multi Ethnic Cohort concluded that coffee drinking was associated with a reduced incidence of chronic liver disease. Compared to non-coffee drinkers, consuming 2-3 cups per day was associated with a 46% reduction in risk of death from chronic liver disease, and greater than 4 cups a day with a 71% reduction³⁴.

Non-alcoholic fatty liver disease

- A North American study to investigate the effects of dietary behaviour in nonalcoholic fatty liver disease patients, using four continuous cycles of the National Health and Nutrition Examination Surveys (NHANES 2001-2008), found caffeine intake to be independently associated with a lower risk of non-alcoholic fatty liver disease, suggesting a potential protective effect¹⁴.
- A 2012 study correlated coffee caffeine consumption with the prevalence and severity of non-alcoholic fatty liver disease. Coffee caffeine consumption was associated with a significant reduction in risk of fibrosis among patients with non-alcoholic steatohepatitis¹⁵.
- A Mexican case-control study looked at the antioxidant effect of coffee by measuring antioxidant enzymes and lipid peroxidation markers in patients with non-alcoholic fatty liver disease, and in patients without non-alcoholic fatty liver disease. They found that a high intake of coffee had a protective effect against non-alcoholic fatty liver disease; however there was no significant difference in the antioxidant variables analyzed¹⁶.
- Data from 728 adults in the Non-alcoholic Steatohepatitis Clinical Research Network (NASH-CRN) suggests that coffee intake was inversely associated with advanced fibrosis in patients with non-alcoholic fatty liver disease¹⁷.
- Three further reviews found a significantly decreased risk of liver fibrosis among patients with non-alcoholic fatty liver disease who drank coffee¹⁸⁻²⁰. One of these reviews further suggested that regular coffee caffeine consumption, not total caffeine intake, was associated with a reduced risk¹⁹.

Hepatitis C


- A prospective cohort US study recruited 766 hepatitis C-infected patients and followed them up for nearly four years²¹. A total of 230 patients showed serious disease progression, e. g. cirrhosis or 2-point increase in Ishak fibrosis score (a histological grading of progression to fibrosis, with scores ranging from 0 to 6). Tea consumption was not associated with the study outcomes. However, regular coffee consumption was statistically significantly associated with lower rates of disease progression.
- A French study developed to evaluate the impact of caffeine consumption on activity grade and fibrosis stage in patients with chronic hepatitis C found that caffeine consumption over 408 mg/day was associated with reduced histological activity in these patients²².

- A study of patients with the Hepatitis C virus suggested that amongst those with a chronic infection, daily consumption of filtered coffee may have a beneficial effect on the stabilisation of the liver enzyme serum alanine aminotransferase (ALT)²³.
- Data from the Singapore Chinese Health Study, a population-based cohort of 63,275 adults, suggested that there was a strong dose-dependent inverse association between coffee intake and risk of non-viral hepatitis related cirrhosis. Compared to non-coffee drinkers, those who drank more than 2 cups per day had a 66% reduction in mortality risk. However, there was no association between coffee intake and hepatitis B related cirrhosis⁸.

If patients change their habits or diet as a result of their disease or its standard therapy, this can bias the observational study. Therefore it is important to assess whether such confounders are adequately taken into account. Case control-studies are particularly susceptible to bias, in particular when other patients are used as controls; prospective cohort studies are less susceptible to this type of bias.

Potential mechanisms

As per the above studies, there is some epidemiological evidence for an inverse association between coffee consumption and liver cancer. The same may be the case for liver fibrosis and alcoholic cirrhosis. Clearly, a plausible biological mechanism is required to explain and confirm these associations.

Caffeine has been suggested as a key component in the observed associations between coffee consumption and a reduced risk of liver conditions ^{10,25,26,42,43}. The precise mechanisms behind this effect are unclear, however a number of potential mechanisms have been proposed.

The role of caffeine

GRAPHIC: reuse from brain video

A number of papers have suggested that caffeine, and in particular its main primary metabolite, paraxanthine, can suppress the synthesis of CTGF (connective tissue growth factor) via a cascade of control cycles, thereby slowing down the growth of this type of tissue, which in turn slows down the progression of liver fibrosis, alcoholic cirrhosis and liver cancer^{9,25,26,42}. However, some of the epidemiological studies did not find an association with tea, which suggests that the mechanism of action might be not dependent solely on caffeine (via paraxanthine).

It has also been suggested that caffeine may act via by blocking adenosine receptors, since the structure of caffeine mimics that of adenosine⁴³, in turn inhibiting activation of liver cells.

However, it should be noted that caffeine may not be the most important component, as other caffeinated drinks do not appear to provide similar protection against liver disease⁴¹.

Other coffee constituents

A 2010 paper also mentions the potential role of the coffee components kahweol and cafestol in lowering the risk of liver cancer²⁷. There is some evidence that they may have anti-carcinogenic properties²⁷.

It has also been proposed that the polyphenols found in coffee, such as chlorogenic acid, may reduce oxidative stress in the liver, in turn reducing the risk of fibrosis and development of cancers⁴³.

A further paper looks at the role of the chlorogenic acids and caffeic acid in coffee, which have been shown to be capable of preventing hepatitis B virus replication, both in vitro and in vivo⁴¹.

References

- 1. EFSA (2015) Scientific Opinion on the Safety of Caffeine, EFSA J, 13(5):4102.
- 2. Loomis D. et al. (2016) Carcinogenicity of drinking coffee, mate, and very hot beverages. *Lancet Oncol*, 17(7):877-878.
- 3. Bravi F. et al. (2007) Coffee drinking and hepatocellular carcinoma risk: a meta-analysis. *Hepatol*, 46:430-435.
- 4. Larsson S.C. et al. (2007) Coffee consumption and liver cancer: a meta-analysis. *Gastroenterol*, 132:1740-1745.
- 5. Bravi F. et al. (2013) Coffee reduces risk for hepatocellular carcinoma: An updated metaanalysis. *Clin Gastro and Hepatol,* 11:1413-1421.
- 6. Bravi F. et al. (2016) Coffee and the risk of hepatocellular carcinoma and chronic liver disease: a systematic review and meta-analysis of prospective studies. *Eur J Cancer Prev*, 26(5): 368-377.

- 7. Saab S. et al. (2014) Impact of coffee on liver disease a systematic review. *Liver Int*, 34(4):495-504.
- 8. Goh G.B. et al. (2014) Coffee, alcohol, and other beverages in relation to cirrhosis mortality: the Singapore Chinese Health Study. *Hepatol*, 60:661-9.
- 9. Wadhawan M. and Anandt A.C. (2016) Coffee and Liver Disease, J Clin Exp Hepatol, 6(1): 40–46.
- 10. Gressner O.A. (2009) About coffee, cappuccino and connective tissue growth factor or how to protect your liver!? *Enviro Toxicol & Pharmacol*, 28(1):1-10.
- 11. Modi A.A. et al. (2010) Increased caffeine consumption is associated with reduced hepatic fibrosis. *Hepatol*, 51:201-209.
- 12. Walton H.B. et al. (2013) An epidemiological study of the association of coffee with chronic liver disease. *Scot Med J*, 58(4):217-222.
- 13. Catalano D. et al. (2010) Protective role of coffee on non-alcoholic fatty liver disease (NAFLD). *Dig Dis* & *Sci*, 55(11):3200-3206.
- 14. Birerdinc A. et al. (2012) Caffeine is protective in patients with non-alcoholic fatty liver disease. *Aliment Pharmacol & Therapeu*, 35(1):76-82.
- 15. Molloy J.W. et al. (2012) Association of coffee and caffeine consumption with fatty liver disease, non-alcoholic steatohepatitis, and degree of hepatic fibrosis. *Hepatol*, 55(2):429-36.
- 16. Gutierrez-Grobe Y. et al. (2012) High coffee intake is associated with lower grade non-alcoholic fatty liver disease: the role of peripheral antioxidant activity. *Annals Hepatol*, 11(3):350-355.
- 17. Bambha K. et al. (2014) Coffee consumption in NAFLD patients with lower insulin resistance is associated with lower risk of severe fibrosis. *Liver Int*. 34(8):1250-8.
- 18. Wijarnpreecha K. et al. (2016) Coffee consumption and risk of non alcoholic fatty liver disease: a systematic review and meta-analysis. *Eur J Gastro Hepatol*, 29(2):e8-e12.
- 19. Shen H. et al. (2016) Association between caffeine consumption and non-alcoholic fatty liver disease: a systematic review and meta-analysis. *Therap Adv Gastro*, 9(1):113-20.
- 20. Hodge A. et al. (2017) Coffee intake is associated with a lower liver stiffness in patients with nonalcoholic fatty liver disease, hepatitis C and hepatitis B. *Nutrients*, 9(1):56.
- 21. Freedman N.D. et al. (2009) Coffee intake is associated with lower rates of liver disease progression in chronic Hepatits-C. *Hepatol*, 50:1360.
- 22. Costentin C.E. et al. (2011) Association of caffeine intake and histological features of chronic hepatitis C. *J Hepatol*, Volume 54; 1123-1129.
- 23. Sasaki Y. et al. (2014) Effect of caffeine containing beverage consumption on serum alanine aminotransferase levels in patients with chronic hepatitis C virus infection: a hospital based cohort study. *PLoS One*, 8(12):e83382.
- 24. Gressner O.A. (2009) Less Smad2 is good for you? A scientific update on coffee's liver benefits. *Hepatol*, 50, 970-978.
- 25. Gressner O.A. et al. (2009) Identification of paraxanthine as the most potent caffeine-derived inhibitor of connective tissue growth factor expression in parenchymal cells. *Liver Int*, 29(6):886-897.
- 26. Wang G.W. et al. (2009) Anti-hepatitis B virus activity of chlorogenic acid, quinic acid and caffeic acid in vivo and in vitro. *Antiviral Res*, 83(2):186-90.
- 27. Muriel P. et al. (2010) Coffee and liver disease. *Fitoterapia*, 81:297-305.
- 28. European Association for the Study of the Liver (2013) 'The burden of Liver Disease in Europe: A Review of Available Epidemiological Data' Available
 - at: http://www.easl.eu/medias/EASLimg/Discover/EU/54ae845caec619f_file.pdf
- 29. Eurostat (2007) 'Europe in Figures: Eurostat yearbook 2006-07' Available at: http://www.nefmi.gov.hu/letolt/eu/ks_cd_06_001_en.pdf
- 30. Ferlay J. et al. (2010) Estimates of cancer incidence and mortality in Europe in 2008. *Eur J Cancer*, 46(4):765–81.
- 31. World Health Organisation (2015) 'Cancer Fact Sheet no.297'. Available at: http://www.who.int/mediacentre/factsheets/fs297/en/
- 32. Sangiovanni A. et al. (2004) Increased survival of cirrhotic patients with a hepatocellular carcinoma detected during surveillance. *Gastroenterol*, 126(4):1005-14.
- 33. Burroughs A. and McNamara D. (2003) Liver disease in Europe. *Alimentary Pharmacol & Therapeutics*, 18:54–59.

- 34. Setiawan V.W. et al. (2015) Association of Coffee Intake with Reduced Incidence of Liver Cancer and Death from Chronic Liver Disease in the US Multiethnic Cohort. *Gastroenterol*, 148(1):118-125.
- 35. Bamia C. et al. (2015) Coffee, tea and decaffeinated coffee in relation to hepatocellular carcinoma in a European population: multicentre, prospective cohort study. *Int J Cancer*, 136(8):1899-908.
- 36. Petrick J.L. et al. (2015) Coffee Consumption and Risk of Hepatocellular Carcinoma and Intrahepatic Cholangiocarcinoma by Sex: The Liver Cancer Pooling Project. *Cancer Epidemiol Biomarkers Prev*, 24(9):1398-406.
- 37. Lai G.Y. (2013) The association of coffee intake with liver cancer incidence and chronic liver disease mortality in male smokers. *Br J Canc* 109:1344–1351.
- 38. Leung W.W. et al. (2011) Moderate coffee consumption reduces the risk of hepatocellular carcinoma in hepatitis B chronic carriers: a case-control study. *J Epidemiol & Comm Health*, 65:556-558.
- 39. Jang E.S. et al. (2013) The effect of coffee consumption on the development of hepatocellular carcinoma in hepatitis B virus endemic area. *Liver Int*, 33(7):1092-1099.
 - 40. Xiao Q. et al. (2014) Inverse association of total and decaffeinated coffee with liver enzymes in NHANES 1999-2010. *Hepatol*, 10.1002/hep.27367.
- 41. Alferink L.J.M. et al. (2017) Coffee and herbal tea consumption is associated with lower liver stiffness in the general population: The Rotterdam Study. *J Hepatol,* published online ahead of print.
- 42. Dranoff J.A. (2017) How does coffee prevent liver fibrosis? Biological plausibility for recent epidemiological observations. *Hepatol*, 60(2):464-467.
- 43. Salomone F. et al. (2017) Molecular Bases Underlying the Hepatoprotective Effects of Coffee, *Nutrients*, 9(1):85.